化肥长期大量使用对生态环境造成了严重破坏,培育养分高效型作物新品种是解决这一问题的关键。氮是植物需求量最大的营养元素,也是制约作物产量的关键因子。因此,解析植物如何高效吸收土壤氮素以提高氮肥利用效率,是植物营养性状遗传改良的重大研究课题。激素是植物响应外部养分状况和内部营养需求以协调自身生长发育的关键信号分子。乙烯是五大传统植物激素之一,其作为重要的逆境激素在植物氮胁迫应答中发挥了重要作用。
JIPB近日在线发表了华南农业大学农学院储成才教授团队题为“Interplaybetween ethylene and nitrogen nutrition: how ethylene orchestrates nitrogenresponses in plants”(https://doi.org/10.1111/jipb.13355)的综述论文。该文系统总结了外部氮素供应对乙烯合成和信号转导的影响,以及由乙烯介导的植物应对各种氮胁迫的形态和生理学响应,包括根系构型重塑、氮素吸收转运、氨毒害应答、以及缺氮引起的叶片早衰和花青素积累等过程(图1)。该文着重分析了乙烯作为细胞内信号如何整合外部养分状态和内部养分需求,将营养信号转化为植物适应性反应;同时也特别强调了乙烯在水稻适应淹水环境下氮素吸收利用中的重要作用;最后讨论了由乙烯介导的氮反应的潜在调控网络。
图1. 乙烯介导植物苗期(A)和成株期(B)氮反应
储成才教授团队长期致力于水稻氮素营养吸收利用研究,取得一系列原创性成果。揭示了籼粳稻亚群氮肥利用差异的遗传基础,发现硝酸盐转运蛋白基因NRT1.1B单碱基变异是导致籼粳稻间氮肥利用效率差异的主要原因,将籼型NRT1.1B导入粳稻能大幅度提高作物氮利用效率 (Hu et al., Nat Genet,2015);鉴定了氮高效利用基因NRT1.1A和Ef-cd,兼具早熟、高产、氮高效育种应用价值(Wang et al., Plant Cell, 2018; Fang et al.,PNAS, 2019);构建了硝酸盐主信号转导通路框架,阐释了硝酸盐信号驱动的水稻氮磷平衡的分子机制 (Hu et al.,Nat Plants, 2019)。发现了NRT1.1B调控水稻根际微生物组成,促进氮循环相关微生物在水稻根系的富集 (Zhang et al, Nat Biotechnol, 2019);克隆了分蘖氮响应基因OsTCP19,揭示了水稻适应世界不同地区土壤肥力的遗传(Liu etal., Nature, 2021)。第一作者马彪教授长期致力于水稻乙烯信号转导研究,首次建立了单子叶植物乙烯突变体筛选体系,并分离鉴定了一系列水稻乙烯突变体 (Ma et al., Mol Plant, 2013)。
这篇综述从乙烯角度出发,总结并讨论了植物氮素吸收利用中乙烯发挥的重要作用。胡斌教授、博士生马田、硕士生先文豪参与了该综述工作。研究得到了十四五国家重点研发计划和岭南现代农业科学与技术广东省实验室自主科研项目的支持。
1. Hu, B., Wang, W., Ou, S., Tang, J., Li, H., Che, R., Zhang, Z., Chai, X., Wang, H., Wang, Y., Liang, C., Liu, L., Piao, Z., Deng, Q., Deng, K., Xu, C., Liang, Y., Zhang, L., Li, L., and Chu, C. (2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47: 834–838.
2. Fang, J., Zhang, F., Wang, H., Wang, W., Zhao, F., Li, Z., Sun, C., Chen, F., Xu, F., Chang, S., Wu, L., Bu, Q., Wang, P., Xie, J., Chen, F., Huang, X., Zhang, Y., Zhu, X., Han, B., Deng, X., and Chu, C. (2019). Ef-cd locus shortens rice maturity duration without yield penalty. Proc. Natl. Acad. Sci. U. S. A. 116: 18717–18722.
3. Wang, W., Hu, B., Yuan, D., Liu, Y., Che, R., Hu, Y., Ou, S., Zhang, Z., Wang, H., Li, H., Jiang, Z., Zhang, Z., Gao, X., Qiu, Y., Meng, X., Liu, Y., Bai, Y., Liang, Y., Wang, Y., Zhang, L., Li, L., Sodmergen, Jing, H., Li, J., and Chu, C. (2018). Expression of the nitrate transporter OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell 30: 638–651.
4. Hu, B., Jiang, Z., Wang, W., Qiu, Y., Zhang, Z., Liu, Y., Li, A., Gao, X., Liu, L., Qian, Y., Huang, X., Yu, F., Kang, S., Wang, Y., Xie, J., Cao, S., Zhang, L., Wang, Y., Xie, Q., Kopriva, S., and Chu, C. (2019). Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nature Plants 5: 401–413.
5. Zhang, J., Liu, Y.-X., Zhang, N., Hu, B., Jin, T., Xu, H., Qin, Y., Yan, P., Zhang, X., Guo, X., Hui, J., Cao, S., Wang, X., Wang, C., Wang, H., Qu, B., Fan, G., Yuan, L., Garrido-Oter, R., Chu, C., and Bai, Y. (2019). NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology 37: 676–684.
6. Liu, Y., Wang, H., Jiang, Z., Wang, W., Xu, R., Wang, Q., Zhang, Z., Li, A., Liang, Y., Ou, S., Liu, X., Cao, S., Tong, H., Wang, Y., Zhou, F., Liao, H., Hu, B., and Chu, C. (2021). Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 590: 600–605.
7. Ma, B., He, S.J., Duan, K.X., Yin, C.C., Chen, H., Yang, C., Xiong, Q., Song, Q.X., Lu, X., Chen, H.W., Zhang, W.K., Lu, T.G., Chen, S.Y., and Zhang, J.S. (2013). Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. Molecular Plant 6: 1830–1848.