黄江锋

2023年05月23日 13:11  点击:[]

黄江锋助理教授,博士硕士生导师

邮箱:supercane.hjf@gxu.edu.cn

研究方向:甘蔗品质性状遗传改良

已所属区级或者校级平台名称:蔗糖产业省部共建协同创新中心、广西甘蔗生物学重点实验室和广西大学甘蔗研究所学术骨干

个人简介:

2010年获华中农业大学农学学士学位;2018年获华中农业大学农学博士学位。2018年至今,在广西大学农学院工作。目前兼任广西生物化学与分子生物学学会副秘书长、《中国糖料》杂志编委。

科研成果:

围绕甘蔗糖分积累、茎秆力学特性等重要生物学性状,利用遗传学手段结合现代生物技术,开展蔗茎品质形成与调控机制研究。目前在甘蔗茎秆品质高通量表型组学、群体遗传学领域取得了系列研究成果。建立的包括甘蔗糖分性状、纤维品质性状等高效快速检测手段,克服了该领域相关技术瓶颈;结合表型组学与基因组学,大规模开展了甘蔗重要种质资源蔗茎品质性状精准评价及优异基于挖掘工作,鉴定了一批甘蔗品质性状重要调控基因。相关成果为甘蔗优良品种培育提供了理论指导和技术支撑。在Plant Biotechnology Journal、Renewable and Sustainable Energy Reviews、Industrial Crops and Products、Bioresource Technology、Biotechnology for Biofuels、Green Chemistry、Plant Methods等刊物发表论文20多篇。


科研项目:

1. 科技部重点研发项目,基于表型组学的高糖高产宜机化甘蔗新品种选育,2022/11-2025/12,155万元,子课题负责人。

2. 广西科技重大专项,甘蔗核心种质资源精准评价与基因挖掘,2022/10-2026/9,104万元,课题负责人。

3. 广西自然科学基金,基于全基因组关联分析和基因共表达网络的甘蔗糖分性状关键基因挖,2022/04-2025/03,10万元,主持。

4. 甘蔗与制糖产业学院专项科研项目,糖料蔗按质论价品质检测技术的研发,2022/11-2024/11,10万元,主持。

5. 广西大学甘蔗专项科研项目,基于全基因组关联分析的甘蔗糖分性状基因挖掘及其功能研究,2022/7-2024/6,30万元,主持。

6. 广西科技基地和人才专项,甘蔗茎秆机械强度的细胞学机制解析,2021/01-2023/12,20万元,主持。

7. 广西大学农学院人才项目,甘蔗品质性状高通量精准评价及资源发掘,2021/03-2023/03,10万元,主持。

8. 广西甘蔗生物学重点实验室自主课题,甘蔗糖分性状种质资源的精准评价与基因挖掘,2019/12-2021/12,50万元,主持。

9. 广西大学高层次人才科研启动经费,2018/09-2024/06,30万元,主持。

代表性论文:

1. Muhammad A, Shen Y, Ma F, Wang M, Jiang F, Hu Q, Mao L, Lu P, Chen X, He G, Khan MT, Deng Z, Chen B, Zhang M*, Huang J*. (2022) A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm. Industrial Crops & Products 189:115814.

2. 沈银娟,马富民,王茂瑶,李欣茹,张木清*,黄江锋*.(2022)蔗茎机械强度精准评价及机制解析.热带作物学报. 43:207-215.

3. Wang M, Li X, Shen Y, Adnan M, Mao L, Lu P, Hu Q, Jiang F, Khan MT, Deng Z, Huang J*, Zhang M*. (2021) A Systematic High-throughput Phenotyping Assay for Sugarcane Stalk Quality Characterization by Near-infrared Spectroscopy. Plant Methods. 17:76.

4. Li X, Ma F, Liang C, Wang M, Zhang Y, Shen Y, Adnan M, Lu P, Khan MT, Huang J*, Zhang M*. (2021) Precise high-throughput online near-infrared spectroscopy assay to determine key cell wall features associated with sugarcane bagasse digestibility. Biotechnol Biofuels. 14:123.

5. Peng N, Yao Z, Wang Z, Huang J, Khan MT, Chen B, Zhang M. (2021) Fungal deterioration of the bagasse storage from the harvested sugarcane. Biotechnol Biofuels. 14:152.

6. Huang J, Khan MT, Perecin D, Coelho ST, Zhang M. (2020) Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective. Renewable and Sustainable Energy Reviews. 133:110296.

7. Fan C, Wang G, Wu L, Liu P, Huang J, Jin X, Zhang G, He Y, Peng L, Luo K, Feng S. (2020) Distinct cellulose and callose accumulation for enhanced bioethanol production and biotic stress resistance in OsSUS3 transgenic rice. Carbohydr Polym. 232:115448.

8. Huang J, Xia T, Li GH, Li XL, Li Y, Wang YT, Wang YM, Chen YY, Xie GS, Bai FW, Peng LC, Wang LQ. Overproduction of native endo-β-1,4-glucanases leads to largely enhanced biomass saccharification and bioethanol production by specific modification of cellulose features in transgenic rice. Biotechnol Biofuels. 2019; 12:11.

9. Huang J, Li Y, Wang Y, Chen Y, Liu M, Wang Y, Zhang R, Zhou S, Li J, Tu Y, Hao B, Peng L, Xia T. (2017) A precise and consistent assay for major wall polymer features that distinctively determine biomass saccharification in transgenic rice by near-infrared spectroscopy. Biotechnol Biofuels. 10:294.

10. Huang J, Xia T, Li A, Yu B, Li Q, Tu Y, Zhang W, Yi Z, Peng L. (2012) A rapid and consistent near infrared spectroscopic assay for biomass enzymatic digestibility upon various physical and chemical pretreatments in Miscanthus. Bioresour Technol. 121:274-281.

11. Wang Y# , Huang J# ,Y, Xiong K, Wang Y, Li F, Liu M, Wu Z, Tu Y, Peng L. (2015) Ammonium oxalate-extractable uronic acids positively affect biomass enzymatic digestibility by reducing lignocellulose crystallinity in Miscanthus. Bioresour Technol. 196:391-398.

12. Alam A, Zhang R, Liu P, Huang J, Wang Y, Hu Z, Madadi M, Sun D, Hu R, Ragauskas AJ, Tu Y, Peng L. (2019) A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. Biotechnol Biofuels. 12:99.

13. Li Y, Liu P, Huang J, Zhang R, Hu Z, Feng S, Wang Y, Xia T, Peng L. (2018) Mild chemical pretreatments are sufficient for bioethanol production in transgenic rice straws overproducing glucosidase. Green Chemistry. 20(9):2047-2056.

14. Fan C, Feng S, Huang J, Wang Y, Wu L, Li X, Wang L, Tu Y, Xia T, Li J, Cai X, Peng L. (2017) AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnol Biofuels. 10:221.

15. Li F, Xie G, Huang J, Zhang R, Li Y, Zhang M, Wang Y, Li A, Li X, Xia T, Qu C, Hu F, Ragauskas AJ, Peng L. (2017) OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnol J. 15(9):1093-1104.

16. Sun D, Alam A, Tu Y, Zhou S, Wang Y, Xia T, Huang J, Li Y, Zahoor, Wei X, Hao B, Peng L. (2017) Steam-exploded biomass saccharification is predominately affected by lignocellulose porosity and largely enhanced by Tween-80 in Miscanthus. Bioresour Technol. 239:74-81.

17. Wu L, Li M, Huang J, Zhang H, Zou W, Hu S, Li Y, Fan C, Zhang R, Jing H, Peng L, Feng S. (2015) A near infrared spectroscopic assay for stalk soluble sugars, bagasse enzymatic saccharification and wall polymers in sweet sorghum. Bioresour Technol. 177:118-24.

18. Si S, Chen Y, Fan C, Hu H, Li Y, Huang J, Liao H, Hao B, Li Q, Peng L, Tu Y. (2015) Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresour Technol. 183:248-54.

19. Zhang W, Yi Z, Huang J, Li F, Hao B, Li M, Hong S, Lv Y, Sun W, Ragauskas A, Hu F, Peng J, Peng L. (2013) Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresour Technol. 130:30-7.

20. Xu N, Zhang W, Ren S, Liu F, Zhao C, Liao H, Xu Z, Huang J, Li Q, Tu Y, Yu B, Wang Y, Jiang J, Qin J, Peng L. (2012) Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol Biofuels. 5(1):58.

21. Hu H, Zhang R, Tao Z, Li X, Li Y, Huang J, Li X, Han X, Feng S, Zhang G, Peng L. (2018) Cellulose Synthase Mutants Distinctively Affect Cell Growth and Cell Wall Integrity for Plant Biomass Production in Arabidopsis. Plant Cell Physiol. 59(6):1144-1157.

22. Li X, Xia T, Huang J, Guo K, Liu X, Chen T, Xu W, Wang X, Feng S, Peng L. (2014) Distinct biochemical activities and heat shock responses of two UDP-glucose sterol glucosyltransferases in cotton. Plant Sci. 219-220:1-8.

23. Hu Z, Wang Y, Liu J, Li Y, Wang Y, Huang J, Ai Y, Chen P, He Y, Aftab MN, Wang L, Peng L. (2021) Integrated NIRS and QTL assays reveal minor mannose and galactose as contrast lignocellulose factors for biomass enzymatic saccharification in rice. Biotechnol Biofuels. 14(1):144.

审定品种(权):

1. 中蔗11号,GPD甘蔗(2022)450015,姚伟、陈保善、蒋洪涛、张木清、邓祖湖、黄江锋、黄有总、张桂英、邹承武、徐良年、王梓廷、赵新旺、黄潮华。

2. 中蔗12号,GPD甘蔗(2022)450014,张木清、姚伟、蒋洪涛、陈保善、邓祖湖、黄江锋、黄有总、邹承武、徐良年、王梓廷、黄潮华、张桂英。

3. 福果1号,GPD甘蔗(2022)450016,张木清、姚伟、王继华、蒋洪涛、陈保善、黄江锋、张积森、邓祖湖、杨川毓、郭莺、阮妙鸿、徐良年、黄有总、邹承武。

科研奖励:




上一条:肖胜华

下一条:胡琴

关闭

顶部