储成才团队发现油菜素内酯调控水稻磷饥饿反应翻译后修饰机制

2024年03月07日 10:55  点击:[]

2024年2月29日,国际著名学术期刊《The Plant Cell》在线发表了我室储成才教授团队的研究论文“Brassinosteroid-dependent phosphorylation of PHOSPHATE STARVATION RESPONSE2 reduces its DNA-binding ability in rice” (Doi: 10.1093/plcell/koae063)。华南农业大学博士后张国霞为论文第一作者,储成才教授和中国农业科学院作物科学研究所童红宁研究员为论文共同通讯作者,我室谢庆军教授、胡斌教授等参与了该项工作。该研究得到广东省基础与应用研究重大专项、国家自然科学基金、中国农业科学院创新工程等项目的资助。

水稻是在世界范围内广泛种植的粮食作物,在其生长过程中经常面临营养缺乏的环境,磷饥饿是水稻最常面对的胁迫之一,磷肥的大量使用对环境造成了严重威胁。水稻通过启动磷饥饿反应(Phosphate Starvation Responses, PSR)来应对低磷胁迫,水稻OsPHR2是该途径上的核心转录因子,阐明OsPHR2的调控机制对于理解PSR过程具有重要意义。油菜素甾醇(Brassinosteroid,BR)在农业生产上被广泛使用植物生长调节剂,作为植物内源激素,BR如何调控磷的吸收利用还很不清楚,解析BR和磷之间的调控关系对于利用BR减少磷肥施用具有重要意义。

张国霞博士后在研究中发现,OsPHR2可以被水稻BR信号途径中的核心抑制子GSK2磷酸化,从而削弱了其的DNA结合活性,导致PSR受抑制,而低磷会诱导GSK2的降解。该研究揭示了植物应对低磷胁迫的一种新机制,即降解GSK2从而解除其对OsPHR2的磷酸化抑制作用。进化分析发现,GSK2所磷酸化的OsPHR2上的关键丝氨酸位点存在于大多数陆地植物中,暗示该翻译后修饰机制可能是植物在进化过程中为适应波动的营养环境而发展的一种重要机制。研究人员通过对BR相关水稻突变体的分析,发现BR可促进磷饥饿诱导(Phosphate Starvation Induced, PSI)基因的表达,暗示BR在PSR中具有调控作用。多种实验方法证明GSK2与OsPHR2存在相互作用,并且质谱分析证明GSK2在植物体外和体内均能磷酸化OsPHR2的第269位丝氨酸(OsPHR2-S269)。该位点存在于OsPHR2的MYB结构域,通过蛋白结构分析证明该位点的磷酸化修饰不影响OsPHR2二聚体形成,但影响其对DNA的结合活性。EMSA和LUC报告系统分析结果均证实,将S269突变成模拟磷酸化形式的天冬氨酸D后,OsPHR2S269D对下游PSI基因启动子的结合能力显著降低。

研究人员进一步在phr2背景下构建了野生型OsPHR2基因的过表达株系(FLAG-OsPHR2),以及S269模拟磷酸化形式(FLAG-OsPHR2S269D)和磷酸化失活形式(FLAG-OsPHR2S269A)的过表达株系,通过ChIP-qPCR在体内证实了OsPHR2S269D对下游PSI基因启动子的结合能力降低。对过表达植物的表型分析发现,当不同形式的OsPHR2表达量相近时,FLAG-OsPHR2S269D叶片的磷毒害表型消失,磷含量显著降低,PSI基因的表达也显著降低。此外,在不同形式的过表达植物中OsPHR2蛋白丰度并没有明显差异,并且水稻原生质体中OsPHR2、OsPHR2S269D和OsPHR2S269A的亚细胞定位也没有明显不同,说明S269位点的磷酸化修饰不影响OsPHR2的蛋白表达和亚细胞定位。以上结果进一步说明,GSK2对S269位点的磷酸化修饰特异性地抑制了OsPHR2的DNA结合活性。

为了证实该机制是否在双子叶植物中保守,研究人员在拟南芥中进行了分析,发现将AtPHR1中与OsPHR2-S269对应的丝氨酸位点突变成天冬氨酸后,其DNA结合活性同样有了明显下降。通过对不同物种中PHR家族成员进行全面分析发现,GSK2所识别的这一丝氨酸位点在不同物种中具有保守性,但是在PHR家族成员之间却存在多态性。如水稻OsPHR1/2和拟南芥AtPHR1, AtPHL1/4中为丝氨酸(S),而在水稻OsPHR3/4和拟南芥AtPHL2/3中为脯氨酸(P)。值得注意的是,之前的研究发现,与OsPHR3/4在转录水平受到低磷诱导不同,OsPHR1/2并不在转录水平受低磷调控。因此,该研究所揭示的OsPHR2的翻译后修饰调控可能代表了一种关键的PSR调控新机制。有意思的是,该丝氨酸残基未在苔藓植物中发现,仅存在于维管植物中,暗示着该磷酸化修饰可能是植物适应陆生环境的一种进化机制。

不同磷浓度处理实验发现,磷饥饿会诱导GSK2蛋白降解,暗示植物在面对低磷胁迫时,通过解除GSK2对OsPHR2的抑制作用来提高对不利营养条件的快速响应,这一去抑制的工作模型对理解植物低磷响应提供了新的视角。此外,该研究也说明BR可通过促进PSR来提高对磷的吸收利用,为利用BR减少磷肥使用提供了理论指导,同时,该功能性磷酸化位点也可作为基因编辑的有效靶点用以提高植物的磷吸收利用效率。

相关论文信息:https://academic.oup.com/plcell/advance-article-abstract/doi/10.1093/plcell/koae063/7615506?redirectedFrom=fulltext&login=false




上一条:赫圣博教授课题组揭示组蛋白H1通过相分离机制驱动异染色质浓缩

下一条:The Plant Cell | 我室陈玲玲/罗继景团队利用泛转录组揭示作物冷响应调控新机制

关闭

顶部